Assignment 9

1. Using Euler's method, approximate $y(1)$ and $z(1)$ with $h=0.5$ and again with $h=0.25$ for the initialvalue problem defined by

$$
\begin{aligned}
y^{(1)}(t) & =2 y(t)+z(t)+t-1 \\
z^{(1)}(t) & =y(t)-2 z(t)-t-2 \\
y(0) & =1 \\
z(0) & =2
\end{aligned}
$$

2. In Question 1, approximate $y(0.1)$ and $z(0.1)$ using one step of Euler's method.
3. In Question 1, approximate $y(0.1)$ and $z(0.1)$ using one step of Heun's method.
4. In Question 1, approximate $y(0.1)$ and $z(0.1)$ using one step of the $4^{\text {th }}$-order Runge-Kutta method.
5. Given the results in Questions 2 and 3, what is the value of a for the adaptive Euler-Heun method for this one step if $\varepsilon_{\mathrm{abs}}=0.1$? What would be the next value of h used, and would you be recalculating the first point, or would you be calculating the value at $t=0.1+h$ with the new value of h ?
6. Convert the following $3^{\text {rd }}$-order initial-value problem into a system of $1^{\text {st }}$-order initial value problems:

$$
\begin{aligned}
y^{(3)}(t) & =2 y(t)+y^{(1)}(t)+0.5 y^{(2)}(t)+t-1 \\
y(0) & =1.2 \\
y^{(1)}(0) & =1.3 \\
y^{(2)}(0) & =1.4
\end{aligned}
$$

7. Convert the following system of three $2^{\text {rd }}$-order initial-value problem into a system of $1^{\text {stt }}$-order initial value problems.

$$
\begin{aligned}
x^{(2)}(t) & =2 x(t) y^{(1)}(t)-1.2 \\
y^{(2)}(t) & =4 y(t) z^{(1)}(t)-1.7 \\
z^{(2)}(t) & =3 z(t) x^{(1)}(t)-1.9 \\
x(0) & =1.4 \\
x^{(1)}(0) & =-1.5 \\
y(0) & =1.6 \\
y^{(1)}(0) & =-1.9 \\
z(0) & =0.1 \\
z^{(1)}(0) & =-1.3
\end{aligned}
$$

8. Use three steps of the shooting method to approximate a solution to the boundary-value problem defined by

$$
\begin{aligned}
u^{(2)}(x) & =0.3 u^{(1)}(x)+0.1 u(x)-x-0.2 \\
u(0) & =2 \\
u(1) & =3
\end{aligned}
$$

At each step of the shooting method, you will use Euler's method with $h=0.2$.
9. The actual solution to the boundary-value problem given in Question 8 is

$$
u(x)=3 \frac{\mathrm{e}^{-0.2 x}\left(10 \mathrm{e}^{0.5}-7\right)-\mathrm{e}^{0.5 x}\left(10 \mathrm{e}^{-0.2}-7\right)}{\mathrm{e}^{0.5}-\mathrm{e}^{-0.2}}+10 x-28
$$

How close is your approximation to this solution at $x=0.2,0.4,0.6$ and 0.8 ?

